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Bursts in a fiber bundle model with continuous damage
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We study the constitutive behavior, the damage process, and the properties of bursts in the continuous
damage fiber bundle model introduced recently. Depending on its two parameters, the model provides various
types of constitutive behaviors including macroscopic plasticity. Analytical results are obtained to characterize
the damage process along the plastic plateau under strain controlled loading; furthermore, for stress controlled
experiments we develop a simulation technique, and numerically explore the distribution of bursts of fiber
breaks assuming an infinite range of interaction. Simulations revealed that under certain conditions power law
distribution of bursts arises with an exponent significantly different from the mean field exponent 5/2. A phase
diagram of the model characterizing the possible burst distributions is constructed.
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I. INTRODUCTION

Recently, the breakdown of disordered materials un
externally imposed stresses has attracted much attention
by now several aspects of the breakdown process are
understood@1,2#. The possibilities of pure analytical ap
proaches for breakdown phenomena are rather limited; he
computer simulation is an indispensable tool in this fie
The models on which computer simulations are based ca
classified as lattice models and fiber bundle models. In lat
models the elastic medium is represented by a spring~beam!
network, and disorder is captured either by random dilut
or by assigning random failure thresholds to the bonds@1#.
The failure rule usually applied in lattice models is disco
tinuous and irreversible: when the local load exceeds
failure threshold of a bond, the bond is removed from
calculations~i.e., its elastic modulus is set to zero!.

A very important class of models of material failure a
the fiber bundle models~FBM’s! @3–34#, which have been
extensively studied during the past years. These models
sist of a set of parallel fibers having statistically distribut
strength. The sample is loaded parallel to the fibers direct
and the fibers fail if the load on them exceeds their thresh
value. In stress controlled experiments, after each fiber
ure the load carried by the broken fiber is redistribu
among the intact ones. The behavior of a fiber bundle un
external loading strongly depends on the range of interact
i.e., on the range of load sharing among fibers. Exact ana
results on FBM’s have been achieved in the framework
the mean field approach, or global load sharing, which me
that after each fiber breaking the stress is equally distribu
on the intact fibers, implying an infinite range of interacti
and a neglect of stress enhancement in the vicinity of fa
regions @3–17,26–28#. In spite of their simplicity, FBM’s
capture the most important aspects of material damage,
they provide a deep insight into the fracture process. O
the past years several extensions of FBM’s have been ca
out by considering stress localization~local load transfer!

*Electronic address: feri@dtp.atomki.hu
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@9,14,15,19,32–34#, the effect of matrix material between fi
bers @14–17,26–28#, the possible nonlinear behavior of fi
bers @5#, the thermally activated breakdown@10# of fibers,
and coupling to an elastic block@25#.

Very recently, a continuous damage law was introduced
lattice models@35# of fracture. In this model, when the fail
ure threshold of a lattice bond is exceeded, the elastic mo
lus of the bond is reduced by a factora(0,a,1); further-
more, multiple failures of bonds are allowed. Simulatio
revealed that, under strain controlled loading, the system
velops into a self-organized state which is macroscopic
plastic, and which is characterized by a power law distrib
tion of avalanches of breaks. We worked out an extension
fiber bundle models by implementing a continuous dam
law for the fibers@12#, in the spirit of Ref. @35#. It was
demonstrated in Ref.@12# that the continuous damage fibe
bundle model~CDFBM! provides a broad spectrum of de
scription of materials varying its parameters, and for cert
parameter settings the model recovers the variants of
FBM known in the literature. The CDFBM can be releva
for materials where the microscopic damage mechanism
gradual multiple failure of components, i.e., matrix and
bers@36,37#. Very recently, the CDFBM was further deve
oped by Moralet al., taking into account time dependence
the failure process@13#.

One of the most appealing results on the CDFBM w
that the multiple failure of brittle elements can give rise to
macroscopic plastic behavior of the specimen, which is th
followed by a hardening or softening regime; furthermo
under certain conditions damage localization occurs. Ho
ever, the microscopic damage process of the CDFBM has
been explored. The main goal of the present paper is to
veal the microscopic failure process in order to underst
the emergence of the plastic macroscopic state. Analyt
results are obtained to characterize the damage process
the plateau under strain controlled loading; furthermore,
stress controlled experiments we develop a simulation te
nique and explore numerically the distribution of bursts
fiber breaks. The effect of localization on the process of da
age is clarified. A phase diagram of the model characteriz
©2001 The American Physical Society22-1
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the possible constitutive behaviors and burst distribution
constructed in terms of the two parameters of the model

II. MODEL

The continuous damage fiber bundle model is an ex
sion of the commonly used fiber bundle models obtained
generalizing the damage law of fibers. The model system
composed ofN parallel fibers, all with a Young modulusEf
but with random failure thresholdsdi , i 51, . . . ,N. The
failure strengthdi of individual fibers is an independen
identically distributed, random variable with a probabili
density p(d) and a cumulative probability distributio
P(d)5*0

dp(x)dx. The fibers are assumed to have a line
elastic behavior up to breaking~brittle failure!. Under a
uniaxial loading of the specimen, a fiber fails if it expe
ences a load larger than its breaking thresholddi . In the
framework of our model, at the failure point the stiffness
the fiber is reduced by a factora, where 0<a,1, i.e., the
stiffness of the fiber after failure isaEf . In principle, a fiber
can now fail more than once, and the maximum numberkmax
of failures allowed for fibers is a parameter of the mod
Once a fiber has failed its damage thresholddi can either be
kept constant for further breakings~quenched disorder!, or
new failure thresholds of the same distribution can be cho
~annealed disorder! which can model some microscopic r
arrangement of the material after failure. The damage law
the model is illustrated in Fig. 1 for both types of disord
The characterization of damage by a continuous param
corresponds to describing the system on length scales la
than the typical crack size. This can be interpreted such
the smallest elements of the model are fibers, and the

FIG. 1. The damage law of a single fiber of the continuo
damage model when multiple failure is allowed~a! for quenched
disorder, and~b! for annealed disorder. The horizontal lines indica
the damage thresholddi . Also see Ref.@12#.
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tinuous damage is assumed to be due to cracking insid
bers. However, the model can also be considered as a
cretization of the system on length scales larger than the
of single fibers, so that one element of the model consist
a collection of fibers with matrix material in between. In th
case the microscopic damage mechanism resulting in m
tiple failure of the elements is the gradual cracking of mat
and the breaking of fibers. In the following we refer to th
elements of the continuous damage FBM as fibers, but
have the above two possible interpretations in mind.

After failure the fiber skips a certain amount of loa
which has to be taken by the other fibers. For the load re
tribution we assume an infinite range of interaction amo
fibers ~mean field approach!; furthermore, an equal strain
condition is imposed which implies that stiffer fibers of th
system carry more load. At a strain« the load of fiberi that
has failedk( i ) times reads

f i~«!5Efa
k( i )«, ~1!

whereEfa
k( i ) is the actual stiffness of fiberi. It is important

to note that, in spite of the infinite interaction range, Eq.~1!
is different from the usual global load sharing where all t
intact fibers carry always the same amount of load. In
following the initial fiber stiffnessEf will be set to unity.

III. CONSTITUTIVE LAWS

Here we provide a derivation of the constitutive law of t
continuous damage FBM in a more transparent way tha
Ref. @12#. This general theoretical framework facilitates o
taining analytical results for the microscopic failure proce
as well. The key quantity is the probabilityPk(«) that, dur-
ing the loading of a specimen, an arbitrarily chosen fib
failed preciselyk times at a strain«, wherek50, . . . ,kmax
denotes the failure index, andk50 is assigned to the intac
fibers.Pk(«) can be cast in the following form forannealed
disorder:

Pk~«!5@12P~ak«!#)
j 50

k21

P~aj«!, ~2!

for 0<k<kmax21 and Pkmax
(«)5) j 50

kmax21P(aj«);
for quenched disorder,

P0~«!512P~«!,

Pk~«!5P~ak21«!2P~ak«!, ~3!

for 1<k<kmax21, andPkmax
(«)5P(akmax21«).

It can easily be seen that the probabilities@Eqs. ~2! and
~3!# fulfill the normalization condition(k50

kmaxPk(«)51. Aver-
age quantities of the fiber ensemble during a loading proc
can be calculated using Eqs.~2! and ~3!. For instance, the
average load on a fiberF/N at a given strain« reads

s

2-2
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F

N
5«F (

k50

kmax

akPk~«!G , ~4!

which provides the macroscopic constitutive behavior of
model, and the expression in the brackets can be consid
as the macroscopic effective Young modulus of the sam
(Ef51). The single terms in the sum give the load carried
the subset of fibers of failure indexk. The variants of fiber
bundle models used widely in the literature can be recove
by special choices of the parameterskmax anda of the model.
A micromechanical model of composites@16,17,20,21# can
be obtained with the parameter valueskmax51 andaÞ0,

F

N
5«@12P~«!#1a«P~«!, ~5!

while settingkmax51, a50, i.e., skipping the second term
in Eq. ~5! results in the classical dry bundle model of Danie
@3#.

In Fig. 2 we show the explicit form of the constitutive la
with annealed disorder for different values ofkmax in the
case of the Weibull distribution,

P~d!512exp@2~d/dc!
m#, ~6!

FIG. 2. Constitutive behavior of the model of annealed disor
~a! with and ~b! without residual stiffness ata50.8 for different
values ofkmax. In ~b! the lowest curve presents the constituti
behavior of the dry bundle model for comparison.
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wherem is the Weibull modulus, anddc denotes the charac
teristic strength of fibers. The parameter values are set tm
52 anddc51 in all the calculations.

Note that in the constitutive equation@Eq. ~4!# the term of
the highest failure indexkmax can be conceived such that th
fibers have a residual stiffness ofakmax after having failed
kmax times. This residual stiffness results in a hardening
the material; hence theF/N curves in Fig. 2~a! asymptoti-
cally tend to straight lines with a slopeakmax. Increasing
kmax, the hardening part of the constitutive behavior is p
ceded by a longer and longer plastic plateau, and in the
iting case ofkmax→` the material behavior becomes com
pletely plastic. A similar plateau and asymptotic line
hardening was observed in brittle matrix composites, wh
the multiple cracking of matrix turned to be responsible
the relatively broad plateau of the constitutive behavior, a
the asymptotic linear part is due to the linear elastic beha
of fibers that remain intact after matrix cracking@36#.

In order to describe macroscopic cracking and global f
ure of a specimen instead of hardening, the residual stiffn
of the fibers has to be set to zero after a maximum num
k* of allowed failures@12,35#. In this case the constitutive
law can be obtained from the general form@Eq. ~4!# by re-
placing kmax in the upper limit of the sum byk* 21. A
comparison of the constitutive laws of the dry and contin
ous damage FBM with global failure is presented in F
2~b!. One can observe that the dry FBM constitutive law h
a relatively sharp maximum, while the continuous dama
FBM curves exhibit a plateau whose length increases w
increasingk* . Note that the maximum value ofF/N corre-
sponds to the macroscopic strength of the material; furth
more, in stress controlled experiments the plateau and
decreasing part of the curves cannot be reached. Howeve
controlling the strain«, the plateau and the decreasing r
gime can also be realized. The value of the driving stress
[F/N, corresponding to the plastic plateau, and the len
of the plateau are determined by the damage parametea,
and bykmax, k* : Decreasinga at a fixedkmax, k* , or in-
creasingkmax, k* at a fixeda, gives rise to an increase of th
plateau’s length.

In Fig. 3 we compare the constitutive laws of the mod
with different types of disorder for hardening and softeni
of fibers. It can be seen that there is no qualitative differe
between curves of annealed and quenched disorder; how
the inset shows that when the fibers do not have resid
stiffness~softening! the local shapes of the curves around t
maximum are different. The different types of maxima of t
constitutive curve of the two different disorders result in
very interesting behavior of the burst distributions, whi
will be discussed below.

IV. DAMAGE

The macroscopic damage state of the model at a certa«
can be characterized by the average number of failures
occur. Based on Eqs.~2! and~3!, we introduce a macroscopi
damage variableD(«) as

r

2-3
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RAUL CRUZ HIDALGO, FERENC KUN, AND HANS. J. HERRMANN PHYSICAL REVIEW E64 066122
D~«!5
1

kmax
(
k51

kmax

kPk~«!, ~7!

which is an integral quantity of the damage process. Fr
the properties ofPk(«) it can be seen thatD is a monotoni-
cally increasing function, andDP@0,1#. Then the average
number of failures can be obtained asNkmaxD(«). Figure 4
illustrates the behavior ofD for three different values o
kmax.

It can be observed in Fig. 4 that the overall behavior
the macroscopic damage variableD is nearly the same fo
annealed and quenched disorder; however, there is a sig
cant difference between the microscopic damage proce

FIG. 3. Comparison of the constitutive behaviors with annea
and quenched disorder. We show data with and without remain
stiffness. The inset demonstrates how the shape of the constit
curves changes with increasingk* with different types of disorders

FIG. 4. The macroscopic damage variableD for annealed~open
symbols! and quenched~filled symbols! disorder for several differ-
ent values ofkmax. The microscopic damage parameter was cho
to bea50.8.
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in the two cases. In spite of the infinite range of interacti
among fibers, a localization of the damage occurs for
case of quenched disorder. This means that weaker fi
tend to break more often than stronger ones. For quenc
disorder, the strain«m , where the weakest fiber of failur
thresholddm reacheskmax, is «m5dm /akmax. Hence at this
loading stage the failure indexk of fibers as a function of the
damage thresholdd can be obtained as

k~d!5
1

ln a
ln

d

dm
1kmax. ~8!

Localization of damage means thatk is a decreasing function
of d, and it can be seen from Eq.~8! that the localization
becomes more pronounced when the damage paramea
→1. This localization effect is illustrated in Fig. 5, where th
analytical result@Eq. ~8!# is compared to simulations fo
three different values ofa.

V. DISTRIBUTION OF BURSTS

One of the most interesting aspects of the damage me
nism of disordered solids is that the breakdown is prece
by an intensive precursor activity in the form of avalanch
of microscopic breaking events@29–31,38,35#. Under a
given external loadF, a certain fraction of fibers fails imme
diately. Due to the load transfer from broken to intact fibe
this primary fiber breaking may initiate a secondary break
that may also trigger a whole avalanche of breakings. IfF is
large enough the avalanche does not stop, and the mat
fails catastrophically. For the dry FBM it has been shown
analytical means that in the case of global load transfer
size distribution of avalanches asymptotically follows a u
versal power law with an exponent25/2 @29,30,38#; how-
ever, in the case of local load transfer no universal beha
exists, and the avalanche characteristic size is bounded@31#.

d
g

ive

n

FIG. 5. The failure indexk of fibers as a function of their failure
thresholdd for several different values of the damage parametea.
The number of fibers was chosen to beN5500. The continuous
lines represent the corresponding analytical results of Eq.~8!. Also
see Ref.@12#.
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BURSTS IN A FIBER BUNDLE MODEL WITH . . . PHYSICAL REVIEW E64 066122
This precursory activity can also be observed experiment
by means of acoustic emission analysis. Acoustic emiss
measurements have revealed that for a broad variety of
ordered materials the response to an increasing external
takes place in bursts having power law size distributions o
a wide range@39,40,38#.

Introducing a continuous damage law in lattice mode
simulations revealed that under strain controlled conditi
the system tends to a steady state, which is macroscopi
plastic@35#, similar to our case. Due to the long range inte
action, the plastic steady state is characterized by power
distributed avalanches of breaks, and it has been argued
the underlying damage mechanism displays self-organ
criticality. In the following we study the distribution of burst
in our CDFBM under strain and stress controlled conditio

A. Strain controlled case

Under strain controlled conditions of fiber bundles there
no load transfer from broken to intact fibers, since the lo
carried by each fiber is determined by the externally impo
strain and the local fiber stiffness according to Eq.~1!. This
implies that the number of fibers which break due to an
finitesimal increase of the external strain is completely de
mined by the statistics of fiber strength, i.e., byp(d) and
P(d). It has been discussed in Sec. III that the plastic plat
and the decreasing part of the constitutive law can only
realized in strain controlled experiments. To reveal the na
of ductility arising in our model, it turns to be useful to stud
the statistics of bursts occurring under strain controlled c
ditions.

The basic quantity to characterize bursts is the probab
pk

k11(«)d« that a fiber, which has failedk times up to strain
« imposed externally, will fail again under an infinitesim
strain incrementd«. From Eqs.~2! and ~3! the probability
densitypk

k11(«) can be cast in the form forannealed disor-
der,

pk
k11~«!5

d

d«)j 50

k

P~aj«!5)
j 50

k

P~aj«!(
i 50

k
p~ai«!ai

P~ai«!
,

k50, . . . ,kmax21, ~9!

and that forquenched disorder,

pk
k11~«!5

d

d«
P~ak«!5p~ak«!ak,

k50, . . . ,kmax21, ~10!

and the total probability density of fiber breaking can
obtained by summing overk:

ptot~«!5
1

kmax
(
k50

kmax21

pk
k11~«!. ~11!

Substitutingk* instead ofkmax, the above equations are als
valid for the case when fibers have no remaining stiffnes
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The number of fiber failures occurring in the strain inte
val @«,«1d«# can be obtained asNkmaxptot(«)d«. This is a
very important characteristic quantity of the microscop
damage process, since it can be monitored experimentall
means of acoustic emission techniques. The behavior ofptot
is shown in Fig. 6 for the softening case with several valu
of k* , where the corresponding constitutive curves are a
presented. It can be seen thatptot has a maximum where th
plastic regime of the constitutive curve begins, and it is
decreasing function of« in the whole plastic region. Due to
the stiffness reduction of the system caused by subseq
failures, in the plastic regime the same increase of str
results in smaller and smaller load increments on fibe
henceptot and the number of failures decreases. It also i
plies that the breaking activity, which can be measured
acoustic emission techniques, decreases along the plate
agreement with experiments@37,41,42#.

It follows from the above argument that decreasing
value of the damage parametera while kmax is kept fixed, the
length of the plastic plateau, preceding the decreasing

FIG. 6. k* ptot as a function of« for annealed disorder, and
comparison of simulations and analytical results of Eq.~11! ~con-
tinuous lines!. The integral of the functions is always equal tok* .
In the upper part of the figure, the corresponding constitutive cur
are also presented for comparison.
2-5
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hardening part of the constitutive behavior, increases s
larger strain is required to achieve successive failure. Th
demonstrated in Fig. 7, where one can also see that for s
a the constitutive curve develops distinct maxima. In orde
clarify the occurrence of these maxima in the plastic plate
in Fig. 7 we also plotpk

k11 for three different values ofk at
a50.4. With decreasinga the length of the plastic platea
increases; however, the consecutive maxima ofpk

k11 be-
comes more and more separated, giving rise to vis
maxima in the plateau. The broader the disorder distribut
the smaller the value ofa where the maxima ofF/N appear.

The energy dissipation rate is also a very important asp
of the ductile regime of the model. The energy dissipat
rate Edis(«) is defined so that the energy dissipated due
the failure of fibers in the strain interval@«,«1d«# can be
obtained asEdis(«)d«,

Edis~«!5 (
k50

kmax21 F1

2
«2ak~12a!Gpk

k11~«!, ~12!

where the expression in the bracket provides the energy
sipated by the failure of a fiber which has already failedk

FIG. 7. ~a! The constitutive behavior varying the damage thre
old at a fixedk* . ~b! pk

k11(«) for a50.4.
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times. In Fig. 8 the energy dissipation rateEdis(«) is plotted
for two different values ofkmax. Comparing Fig. 8 to the
corresponding constitutive curves in Fig. 2, it can be o
served that in the plastic regimeEdis(«) is constant.

B. Stress controlled case

Under stress controlled loading conditions the mic
scopic dynamics of the damage process is more complic
than in the strain controlled case, since the failure of e
fiber is followed by a redistribution of load, which can pro
voke further fiber breakings, resulting in an avalanche
failure events. Studying the statistics of avalanches un
quasistatic loading of a specimen, important information c
be gained about the dynamics of damage, which can the
compared to the results of acoustic emission experime
Due to the difficulties of an analytical treatment we devel
a simulation technique, and numerically explore the prop
ties of bursts in our continuous damage fiber bundle mo
The interaction of fibers, the method of load redistribution
crucial for the avalanche activity. A very important proper
of the CDFBM is that, in spite of the infinite range of inte
action, the load on intact fibers is not equal, but stiffer fib
carry more load; furthermore, for quenched disorder dam
localization occurs, which might also affect the avalanc
activity.

To implement the quasistatic loading of a specimen oN
fibers in the framework of the CDFBM, the local load on th
fibers f i has to be expressed in terms of the external driv
F. Making use of Eq.~1! it follows that

F5(
i 51

N

f i5«(
i 51

N

ak( i ); ~13!

hence the strain and the local load on fibers can be obta
as

-

FIG. 8. The energy dissipation rate for two different values
kmax.
2-6
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«5
F

(
i 51

N

ak( i )

, f i5F
ak( i )

(
i 51

N

ak( i )

, ~14!

when the external loadF is controlled. The simulation of the
quasistatic loading proceeds as follows: in a given sta
state of the system we determine the load on the fiberf i
from the external loadF using Eq.~14!. The next fiber to
break can be found as

r 5
di*

f i*
5min

i

di

f i
, r .1, ~15!

i.e., the fiber that breaks is the one for which the ratiodi / f i
is the smallest. Herei * denotes the index of the fiber t
break,di is the damage threshold of fiberi, andf i is the local
load on it. To ensure that the local load of a fiber is prop
tional to its stiffness, the external load has to be increase
a multiplicative way, so thatF→rF is imposed, and the
failure index of fiberi * is increased by 1@k( i * )→k( i * )
11#. After the breaking of fiberi * , the loadf i carried by the
fibers has to be recalculated making use of Eq.~14!, which
also provides the correct load redistribution of the model
there are fibers in the state obtained whose load exceed
local breaking threshold, they fail, i.e., their failure index
increased by 1 and the local load is again recalculated un
stable state is obtained. A fiber can no longer break if
failure indexk has reachedk* or kmax during the course of
the simulations. This dynamics gives rise to a complex a
lanche activity of fiber breaks, which is also affected by t
type of disorder. The size of an avalancheS is defined as the
number of breakings initiated by a single failure due to
external load increment. Simulations revealed that vary
the two parameters of the modelkmax, a, or k* , a and the
type of disorder, the CDFBM shows an interesting variety
avalanche activities, characterized by different shapes of
avalanche size distributions.

In Fig. 9 the histogramsn(S) of the avalanche sizesSare
shown which were obtained for a system of remaining st
ness and annealed disorder with Weibull parametersm52
anddc51. Since in the limiting case ofa→0, the CDFBM
recovers the global load sharing dry fiber bundle model
Fig. 9 the curves with smalla andkmax51 are power laws
with an exponenta55/2, in agreement with the analytica
results@29,30#. Increasing the value ofa at a fixedkmax only
gives rise to a larger number of avalanches, i.e., para
straight lines are obtained on a double logarithmic plot,
the functional form ofn(S) does not change. However, whe
a exceeds a critical valueac (ac'0.3 was obtained with the
Weibull parameters specified above! the avalanche statistic
drastically changes. At a fixeda.ac when kmax is smaller
than a specific valuekc(a), the avalanche sizes show a
exponential distribution, while abovekc(a) the distribution
takes a power law form with an exponentb52.1260.05.

Based on the above results of simulations a phase diag
is constructed which summarizes the properties of a
lanches with respect to the parameters of the model. Fig
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10 demonstrates the existence of three different regime
the damage parametera is smaller thanac , the dynamics of
avalanches is close to the simple dry bundle model cha
terized by a power law of the mean field exponenta55/2.
However, fora.ac the avalanche size distribution depen
on the number of failureskmax allowed. The curve ofkc(a)
in the phase diagram separates two different regimes. Fo
parameter regime below the curve, avalanche distributi
with an exponential shape were obtained. However, the
rameter regime abovekc(a) is characterized by a power law
distribution of avalanches with a constant exponentb
52.1260.05 significantly different from the mean field ex

FIG. 9. Avalanche size distributions for different values ofkmax

anda when fibers have remaining stiffness and when the disorde
annealed. The number of fibers wasN51600, and averages wer
made over 2000 samples. The number of avalanchesn of sizeSare
also shown to demonstrate how the total number of avalanc
changes.

FIG. 10. Phase diagram for a continuous damage model w
remaining stiffness for both types of disorder. The functional fo
of the avalanche statistics is given in the parameter regimes.
location of the dry bundle model~DBM! in the parameter space i
also indicated.
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ponenta55/2 @29,30#. It is important to emphasize that th
overall shape of the phase diagram is independent of the
of the disorder~annealed or quenched!; moreover, the spe
cific valuesac'0.3 andkc(a) depend on the details of th
disorder distributionp(d).

A very different behavior was obtained for a system wh
fibers do not have any remaining stiffness after ak* number
of failures. Simulations revealed that in this case the a
lanche statistics depend strongly on the type of disor
When the disorder is quenched the size distribution of a
lanches follows always the dry bundle results for the wh
domain of parameters, i.e.,P(S) shows a power law behav
ior with an exponenta55/2. Whenk* .1, the larger num-
ber of breakings results in more avalanches but the ove
distribution does not change.

Nevertheless, when the disorder is annealed the sys
shows a more complex behavior. Whena falls below a cer-
tain critical valueac the results are similar to the DBM in
dependently of the value ofk* , however, fora.ac an inter-
esting avalanche dynamics appears~for the present values o
the Weibull parametersac'0.35 was obtained!. In Fig. 11
the avalanche distributions are shown for ana value above
ac , varying the value ofk* . It is very important to empha
size that the curves in all cases can be well fitted with
power law; however, the value of the exponent depends
k* . Two extreme cases can be distinguished: fork* 51 the
system recovers the DBM avalanche dynamics. On the o
hand, fork* .kc(a) the exponent of the power laws isb
52.1260.05, similar to the case of remaining stiffness. B
low kc(a) the exponents vary as a function ofk* between
the mean field exponentsa andb.

Based on Refs.@29,30# the different types of avalanch
size distributions can also be understood up to some exte
terms of the constitutive curves of Sec. III. Comparing Fig

FIG. 11. Avalanche size distributions for different values ofk*
at a fixeda.ac when fibers have no remaining stiffness and t
disorder is annealed.
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and Figs. 9 and 11, it can be recognized that if the const
tive curve has a single quadratic maximum the correspo
ing avalanche size distribution of the CDFBM follows th
mean field results, while other types of avalanche statis
arises when this condition does not hold.

VI. CONCLUSIONS

A detailed analytical and numerical study of the contin
ous damage fiber bundle model is presented. The model
extension of the classical fiber bundle model obtained
introducing a continuous damage law, and allowing for m
tiple failure of fibers with quenched and annealed disorde
A simple general derivation of the constitutive behavior
the model is provided, which also facilitates obtaining an
lytical results for the microscopic damage process. Vary
its parameters, the model provides a broad spectrum of
scription of materials ranging from strain hardening to p
fect plasticity; hence the model can be relevant to desc
the damage process of various types of mater
@36,43,37,41,42#. It is a remarkable feature of the model th
multiple failures of brittle elements can result in a macr
scopically plastic state, which has also been observed exp
mentally in materials where the damage mechanism is
gradual multiple failure of ingredients@41,42#.

The present study focused on the microscopic dam
process to understand the emergence of the plastic pla
under strain controlled loading, and the resulting avalan
activity under stress controlled loading of the continuo
damage fiber bundle model. Analytical results are obtaine
characterize the damage process along the plateau u
strain controlled loading, furthermore, for stress control
experiments a simulation technique was developed, and
distribution of avalanches of fiber breaks was explored
merically. Simulations showed that depending on the para
eters of the model the distribution of bursts of fiber brea
can be exponential or power law. Based on extensive c
puter simulations, a phase diagram characterizing the p
sible avalanche distributions is constructed in terms of
two parameters of the model. One of the most appea
outcomes is that the model has a broad parameter reg
where the avalanche statistics shows a power law beha
with an exponent significantly different from the well know
mean field exponent, in spite of the infinite range of intera
tion among fibers. The results obtained have relevance
understanding the acoustic emission measurements
formed on various elastoplastic materials@36,43,37,41,42#.
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