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Bursts in a fiber bundle model with continuous damage
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We study the constitutive behavior, the damage process, and the properties of bursts in the continuous
damage fiber bundle model introduced recently. Depending on its two parameters, the model provides various
types of constitutive behaviors including macroscopic plasticity. Analytical results are obtained to characterize
the damage process along the plastic plateau under strain controlled loading; furthermore, for stress controlled
experiments we develop a simulation technique, and numerically explore the distribution of bursts of fiber
breaks assuming an infinite range of interaction. Simulations revealed that under certain conditions power law
distribution of bursts arises with an exponent significantly different from the mean field exponent 5/2. A phase
diagram of the model characterizing the possible burst distributions is constructed.
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I. INTRODUCTION [9,14,15,19,32—-3} the effect of matrix material between fi-
bers[14-17,26—-28 the possible nonlinear behavior of fi-
Recently, the breakdown of disordered materials undebers[5], the thermally activated breakdowO] of fibers,
externally imposed stresses has attracted much attention, andd coupling to an elastic blodR5].
by now several aspects of the breakdown process are well Very recently, a continuous damage law was introduced in
understood[1,2]. The possibilities of pure analytical ap- lattice modeld35] of fracture. In this model, when the fail-
proaches for breakdown phenomena are rather limited; henagre threshold of a lattice bond is exceeded, the elastic modu-
computer simulation is an indispensable tool in this field.Jys of the bond is reduced by a factf0<a<1); further-
The models on which computer simulations are based can i@ore, multiple failures of bonds are allowed. Simulations
classified as lattice models and fiber bundle models. In latticgevealed that, under strain controlled loading, the system de-
models the elastic medium is represented by a sgBBgM  yelops into a self-organized state which is macroscopically
network, and disorder is captured either by random dilutionyastic, and which is characterized by a power law distribu-
or by assigning random failure thresholds to the boids  {jon of avalanches of breaks. We worked out an extension of

The failure rule usually applied in lattice models is discon-fiber bundle models by implementing a continuous damage
tinuous and irreversible: when the local load exceeds th?aw for the fibers[12], in the spirit of Ref.[35]. It was

failure t_hreshold_of a bo_nd, the bO’?d is removed from thedemonstrated in Refl2] that the continuous damage fiber
calculations(i.e., its elastic modulus is set to zg¢ro

A very important class of models of material failure are bundle modeCDFBM) provides a broad spectrum of de-

the fiber bundle model&BM's) [3—34], which have been scription of materials varying its parameters, and for certain

extensively studied during the past years. These models coR2r@meter settings the model recovers the variants of the

sist of a set of parallel fibers having statistically distributed™8M known in the literature. The CDFBM can be relevant
strength. The sample is loaded parallel to the fibers directiorfo" Materials where the microscopic damage mechanism is
and the fibers fail if the load on them exceeds their threshol@adual multiple failure of components, i.e., matrix and fi-
value. In stress controlled experiments, after each fiber failbers[36,37. Very recently, the CDFBM was further devel-
ure the load carried by the broken fiber is redistributedoped by Moralet al, taking into account time dependence in
among the intact ones. The behavior of a fiber bundle undehe failure procesg13].
external loading strongly depends on the range of interaction, One of the most appealing results on the CDFBM was
i.e., on the range of load sharing among fibers. Exact analytithat the multiple failure of brittle elements can give rise to a
results on FBM’s have been achieved in the framework oimacroscopic plastic behavior of the specimen, which is then
the mean field approach, or global load sharing, which meant®llowed by a hardening or softening regime; furthermore,
that after each fiber breaking the stress is equally distributednder certain conditions damage localization occurs. How-
on the intact fibers, implying an infinite range of interaction ever, the microscopic damage process of the CDFBM has not
and a neglect of stress enhancement in the vicinity of failedeen explored. The main goal of the present paper is to re-
regions[3—17,26—28 In spite of their simplicity, FBM's  veal the microscopic failure process in order to understand
capture the most important aspects of material damage, arile emergence of the plastic macroscopic state. Analytical
they provide a deep insight into the fracture process. Overesults are obtained to characterize the damage process along
the past years several extensions of FBM’s have been carrighe plateau under strain controlled loading; furthermore, for
out by considering stress localizatidfocal load transfer  stress controlled experiments we develop a simulation tech-
nique and explore numerically the distribution of bursts of
fiber breaks. The effect of localization on the process of dam-
*Electronic address: feri@dtp.atomki.hu age is clarified. A phase diagram of the model characterizing
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a) tinuous damage is assumed to be due to cracking inside fi-
bers. However, the model can also be considered as a dis-
cretization of the system on length scales larger than the size
of single fibers, so that one element of the model consists of
a collection of fibers with matrix material in between. In this
case the microscopic damage mechanism resulting in mul-
tiple failure of the elements is the gradual cracking of matrix
o B and the breaking of fibers. In the following we refer to the
e e elements of the continuous damage FBM as fibers, but we
have the above two possible interpretations in mind.

After failure the fiber skips a certain amount of load
b which has to be taken by the other fibers. For the load redis-
- d3 tribution we assume an infinite range of interaction among
4 fibers (mean field approagh furthermore, an equal strain
1 condition is imposed which implies that stiffer fibers of the
’ / o system carry more load. At a strainthe load of fiber that
d; has failedk(i) times reads

£

fi(e)=E;a Vg, 1)

whereEa(" is the actual stiffness of fiber It is important

FIG. 1. The damage law of a single fiber of the continuousto note that, in spite of the infinite interaction range, Eq.
damage model when multiple failure is allowég for quenched s different from the usual global load sharing where all the
disorder, andb) for annealed disorder. The horizontal lines indicate intact fibers carry always the same amount of load. In the
the damage threshold| . Also see Ref[12]. following the initial fiber stiffnes<E; will be set to unity.

the possible constitutive behaviors and burst distributions is

constructed in terms of the two parameters of the model. lll. CONSTITUTIVE LAWS

Here we provide a derivation of the constitutive law of the
Il MODEL continuous damage FBM in a more transparent way than in
- MO Ref.[12]. This general theoretical framework facilitates ob-

The continuous damage fiber bundle model is an extentaining analytical results for the microscopic failure process
sion of the commonly used fiber bundle models obtained bys Well. The key quantity is the probabiliyi(¢) that, dur-
generalizing the damage law of fibers. The model system i#1g the loading of a specimen, an arbitrarily chosen fiber
composed oN parallel fibers, all with a Young modulus; ~ failed preciselyk times at a straire, wherek=0, .. . Knax
but with random failure thresholdd,, i=1,... N. The denotes the failure index, ard=0 is assigned to the intact
failure strengthd; of individual fibers is an independent, fibers.P,(g) can be cast in the following form fannealed
identically distributed, random variable with a probability disorder
density p(d) and a cumulative probability distribution
P(d)=f8p(x)dx. The fibers are assumed to have a linear k=1 _
elastic behavior up to breakingrittle failure). Under a Pk(s):[l—P(aks)]H P(ale), (2
uniaxial loading of the specimen, a fiber fails if it experi- 1=0
ences a load larger than its breaking threshajld In the
framework of our model, at the failure point the stiffness offor 0<k<k,,,—1 and Pkmax(s)znrggflp(ajs);
the fiber is reduced by a factey where G<a<1, i.e., the  for quenched disorder
stiffness of the fiber after failure sE; . In principle, a fiber
can now fail more than once, and the maximum nuniger,
of failures allowed for fibers is a parameter of the model.
Once a fiber has failed its damage threshdjldan either be
kept constant for further breakindgguenched disordgror P(e)=P(ak te)—P(ake), 3
new failure thresholds of the same distribution can be chosen
(annealed disordgmhich can model some microscopic re- _ Koo
arrangement of the material after failure. The damage law o ' 1$k$kma}x_ L andemax(s)— P(a max_ .8)'
the model is illustrated in Fig. 1 for both types of disorder. It can easily be seen that the pro‘Pabnn[ﬁqs.(Z) and
The characterization of damage by a continuous parametéd)] fuffill the normalization conditior®, "3P(e) =1. Aver-
corresponds to describing the system on length scales largage quantities of the fiber ensemble during a loading process
than the typical crack size. This can be interpreted such thatan be calculated using Eg&) and (3). For instance, the
the smallest elements of the model are fibers, and the coraverage load on a fibét/N at a given straire reads

Po(e)=1—P(e),
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10 L A T wherem is the Weibull modulus, and; denotes the charac-
09t g) i teristic strength of fibers. The parameter values are sgt to
o8l g =2 andd.=1 in all the calculations.
Note that in the constitutive equatipBqg. (4)] the term of
07 i the highest failure indek,,,, can be conceived such that the
06 - fibers have a residual stiffness afmax after having failed
Z sl [ e ] Kmax times. This residual stiffness results in a hardening of
P the material; hence thE/N curves in Fig. 2a) asymptoti-
04T oo | ] cally tend to straight lines with a slopg‘max Increasing
03 — 2 § kmax, the hardening part of the constitutive behavior is pre-
02k e g ] ceded by a longer and longer plastic plateau, and in the lim-
ol T tg ] iting case ofk,,.x—° the material behavior becomes com-
' pletely plastic. A similar plateau and asymptotic linear
00 —— hardening was observed in brittle matrix composites, where
b) the multiple cracking of matrix turned to be responsible for
0.5 5 the relatively broad plateau of the constitutive behavior, and
/ S the asymptotic linear part is due to the linear elastic behavior
04l / ] of fibers that remain intact after matrix crackif@g].
R In order to describe macroscopic cracking and global fail-
Z o3 / | ure of a specimen instead of hardening, the residual stiffness
P of the fibers has to be set to zero after a maximum number
03 | k* of allowed failures[12,35. In this case the constitutive
' law can be obtained from the general foffq. (4)] by re-
placing ki,ax in the upper limit of the sum bk*—1. A
0.1 T comparison of the constitutive laws of the dry and continu-
e ous damage FBM with global failure is presented in Fig.

0.0 2 1 n
00 05 10

1.5 20

25 30 35 40 45 50
g

2(b). One can observe that the dry FBM constitutive law has
a relatively sharp maximum, while the continuous damage

FBM curves exhibit a plateau whose length increases with
FIG. 2. Constitutive behavior of the model of annealed disorderincreasingk* . Note that the maximum value &/N corre-

(&) with and (b) without residual stiffness @=0.8 for different  sponds to the macroscopic strength of the material; further-
values ofknay. In (b) the lowest curve presents the constitutive more, in stress controlled experiments the plateau and the
behavior of the dry bundle model for comparison. decreasing part of the curves cannot be reached. However, by
controlling the straine, the plateau and the decreasing re-
gime can also be realized. The value of the driving stress
=F/N, corresponding to the plastic plateau, and the length
of the plateau are determined by the damage paranaeter

which provides the macroscopic constitutive behavior of thednd byKpay, k*: Decreasinga at a fixedkpay, k*, or in-
model, and the expression in the brackets can be consideréfeasinknax, k* at a fixeda, gives rise to an increase of the

as the macroscopic effective Young modulus of the sampl®lateau’s length.

(E;=1). The single terms in the sum give the load carried by In Fig. 3 we compare the constitutive laws of the model
the subset of fibers of failure index The variants of fiber ~With different types of disorder for hardening and softening
bundle models used widely in the literature can be recovereff fibers. It can be seen that there is no qualitative difference
by special choices of the parametkys,, anda of the model. between curves of annealed and quenched disorder; however,
A micromechanical model of composit€$6,17,20,2] can the inset shows that when the fibers do not have residual

be obtained with the parameter valugs,,=1 anda#0, stiffness(softening the local shapes of the curves around the
maximum are different. The different types of maxima of the

constitutive curve of the two different disorders result in a
very interesting behavior of the burst distributions, which
will be discussed below.
while settingk,,.,=1, a=0, i.e., skipping the second term
in Eq. (5) results in the classical dry bundle model of Daniels
[3]. IV. DAMAGE

In Fig. 2 we show the explicit form of the constitutive law
with annealed disorder for different values laf,,, in the
case of the Weibull distribution,

P(d)=1—exd —(d/do)"™], (6)

kmax

> akPy(e)

NZS y (4)

= el1-P(e)] +asP() 5)

The macroscopic damage state of the model at a cettain
can be characterized by the average number of failures that
occur. Based on Eq§2) and(3), we introduce a macroscopic
damage variabl® (&) as

066122-3



RAUL CRUZ HIDALGO, FERENC KUN, AND HANS. J. HERRMANN PHYSICAL REVIEW B4 066122

T T T T T T T T T 100 4
2k T | )
O5F s ECTRTIETS IS 4 | 90
04l = T 80:
EENY, ‘—*:T§\\‘\\\< ] )
o2} e 1 70 H
08 ] 4
01 - 60
ZE 00005 L0 15 2.0 2.5 8.0 3.5 40 45 59 =)
= o06F e 4 \E 50
R 4 40
04r 2 Kuax=k =8 | ] 30
7 e —— quenched
ol .u\\\n ------ annealed | | 20
10
0.0 1 1 1 1 1 1 1 1 -
00 05 10 15 20 25 30 35 40 45 50 0

g

FIG. 3. Comparison of the constitutive behaviors with annealed ¢ 5 The fajlure index of fibers as a function of their failure
and quenched disorder. We show data with and without remaining, .o o1dd for several different values of the damage paramater
stiffness. The inset demonstrates how the shape of the constitutive o number of fibers was chosen to Ke=500. The continuous
curves changes with increasikg with different types of disorders. lines represent the corresponding analytical results of @qAlso

see Ref[12].
kmax

K Z kPy(e), (7)  in the two cases. In spite of the infinite range of interaction
max k=1 among fibers, a localization of the damage occurs for the

case of quenched disorder. This means that weaker fibers
which is an integral quantity of the damage process. Fromend to break more often than stronger ones. For quenched
the properties oPy(¢) it can be seen thdd is a monotoni-  disorder, the straire,,, where the weakest fiber of failure
cally increasing function, an® [0,1]. Then the average thresholdd,, reache,.y, is £m=d,/a‘max. Hence at this

number of failures can be obtained ld&q,,D(¢). Figure 4  |oading stage the failure indexof fibers as a function of the
illustrates the behavior ob for three different values of gdamage threshold can be obtained as

D(e)=

kmax-

It can be observed in Fig. 4 that the overall behavior of
the macroscopic damage varialileis nearly the same for
annealed and quenched disorder; however, there is a signifi-
cant difference between the microscopic damage processéscalization of damage means thais a decreasing function
of d, and it can be seen from EB) that the localization
becomes more pronounced when the damage pararaeter
—1. This localization effect is illustrated in Fig. 5, where the
analytical result{Eq. (8)] is compared to simulations for
three different values cd.

1 d
k(d)::ﬁ;£|n44“+kmax. (8

dm

V. DISTRIBUTION OF BURSTS

One of the most interesting aspects of the damage mecha-
nism of disordered solids is that the breakdown is preceded
by an intensive precursor activity in the form of avalanches
of microscopic breaking eventf29-31,38,3% Under a
given external loadr, a certain fraction of fibers fails imme-
diately. Due to the load transfer from broken to intact fibers,
this primary fiber breaking may initiate a secondary breaking
that may also trigger a whole avalanche of breakings. i
large enough the avalanche does not stop, and the material
fails catastrophically. For the dry FBM it has been shown by
analytical means that in the case of global load transfer the

FIG. 4. The macroscopic damage variabldor annealedopen  Size distribution of avalanches asymptotically follows a uni-
symbolg and quenchedfilled symbol$ disorder for several differ-  versal power law with an exponent5/2 [29,30,38; how-
ent values ok,,,. The microscopic damage parameter was choserever, in the case of local load transfer no universal behavior
to bea=0.8. exists, and the avalanche characteristic size is bouf®igd
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This precursory activity can also be observed experimentally
by means of acoustic emission analysis. Acoustic emissior
measurements have revealed that for a broad variety of dis
ordered materials the response to an increasing external loa
takes place in bursts having power law size distributions over
a wide rangd 39,40,38.

Introducing a continuous damage law in lattice models,
simulations revealed that under strain controlled conditions
the system tends to a steady state, which is macroscopicall
plastic[35], similar to our case. Due to the long range inter-
action, the plastic steady state is characterized by power lav
distributed avalanches of breaks, and it has been argued thi
the underlying damage mechanism displays self-organizec
criticality. In the following we study the distribution of bursts
in our CDFBM under strain and stress controlled conditions.

A. Strain controlled case

Under strain controlled conditions of fiber bundles there is 0
no load transfer from broken to intact fibers, since the load 55| |
carried by each fiber is determined by the externally imposec ’
strain and the local fiber stiffness according to EQ. This ©
implies that the number of fibers which break due to an in- % *°[ i
finitesimal increase of the external strain is completely deter- &
mined by the statistics of fiber strength, i.e., pgd) and ¥ LS , T
P(d). It has been discussed in Sec. lll that the plastic plateat .
and the decreasing part of the constitutive law can only be Lo - e T
realized in strain controlled experiments. To reveal the nature I - ' \
of ductility arising in our model, it turns to be useful to study 0.5
the statistics of bursts occurring under strain controlled con-
ditions. g e '
The basic quantity to characterize bursts is the probability o 2z 3 4 5 6 7 8% 9 10
p{j”(s)ds that a fiber, which has failekltimes up to strain €

e imposed externally, will fail again under an infinitesimal 5 g Pt @ a function ofe for annealed disorder, and
strain incrementle. From Eqgs.(2) and (3) the probability  ¢omparison of simulations and analytical results of Bd) (con-

densitypi“*(e) can be cast in the form fannealed disor-  tinuous lines. The integral of the functions is always equalkib.
der, In the upper part of the figure, the corresponding constitutive curves
K K _ are also presented for comparison.
k+1 H i H P(al 2 p(a's)a’
Pk ~(e) d P(a'e) j=0 (a S)i:o P(a'e) ' The number of fiber failures occurring in the strain inter-
val[e,e+de] can be obtained ask,,,Pioi(e)de. Thisis a
k=0, ... Knax—1, (99  very important characteristic quantity of the microscopic
damage process, since it can be monitored experimentally by
and that forquenched disorder means of acoustic emission techniques. The behavipgpf

is shown in Fig. 6 for the softening case with several values
i1 d . o of k*, where the corresponding constituti\_/e curves are also
P ()= g P(a%e)=p(a‘e)a’, presented. It can be seen tiggs; has a maximum where the
plastic regime of the constitutive curve begins, and it is a
decreasing function of in the whole plastic region. Due to
the stiffness reduction of the system caused by subsequent
failures, in the plastic regime the same increase of strain
results in smaller and smaller load increments on fibers;
hencep,,; and the number of failures decreases. It also im-
1 plies that the breaking activity, which can be measured by
PEH(E)- (11) acoustic emis_sion techniques, decreases along the plateau in
agreement with experimenf87,41,43.
It follows from the above argument that decreasing the
Substitutingk* instead ok,,4,, the above equations are also value of the damage parametewhile k. is kept fixed, the
valid for the case when fibers have no remaining stiffness. length of the plastic plateau, preceding the decreasing or

k=0, ... Kmax—1, (10

and the total probability density of fiber breaking can be
obtained by summing ovéc

1 Kmax~

Prot(&) =

kmax k=0
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FIG. 8. The energy dissipation rate for two different values of
0.8 kmax-

times. In Fig. 8 the energy dissipation rdig,(¢) is plotted

pkk+1(€)

oer el i for two different values ok.,,,. Comparing Fig. 8 to the

- corresponding constitutive curves in Fig. 2, it can be ob-
04 . served that in the plastic regintgy;s(¢) is constant.
02} k=2 .

B. Stress controlled case

Under stress controlled loading conditions the micro-
0 = 3 4 5 ¢ 7 s 9 1  scopicdynamics of the damage process is more complicated
than in the strain controlled case, since the failure of each
fiber is followed by a redistribution of load, which can pro-
FIG. 7. (a) The constitutive behavior varying the damage thresh-voke further fiber breakings, resulting in an avalanche of
old at a fixedk*. (b) pk*'(e) for a=0.4. failure events. Studying the statistics of avalanches under
quasistatic loading of a specimen, important information can

hardening part of the constitutive behavior, increases sincBe gained about the dynamics of damage, which can then be
larger strain is required to achieve successive failure. This i§ompared to the results of acoustic emission experiments.
demonstrated in Fig. 7, where one can also see that for smdue to the difficulties of an analytical treatment we develop
athe constitutive curve develops distinct maxima. In order to@ Simulation technique, and numerically explore the proper-
clarify the occurrence of these maxima in the plastic plateawfies of bursts in our continuous damage fiber bundle model.
in Fig. 7 we also plopf™* for three different values df at The interaction of fibers, the method of load redistribution, is
a=0.4. With decreasing the length of the plastic plateau crucial for the avalanche activity. A very important property
increases: however. the consecutive maximaprl pe- Of the CDFBM is that, in spite of the infinite range of inter-

comes more and more separated, giving rise to visibI@Ction’ the load on intact fibers is not equal, but stiffer fibers

maxima in the plateau. The broader the disorder distributionCarfy more load; further_more,_for quenched disorder damage
localization occurs, which might also affect the avalanche

the smaller the value &f where the maxima of/N appear. o
The energy dissipation rate is also a very important aspe(,atCt_'IY'tY' | h istatic loadi f imemNof
of the ductile regime of the model. The energy dissipatio 0 Implement the quasistatic loading of a specimemo

n. :
rate Eyis(¢) is defined so that the energy dissipated due tof!bers in the framework of the.CDFBM, the local load on.the
the failure of fibers in the strain interviik,s +de] can be fibersf; has to be expressed in terms of the external driving
obtained a€;(e)de ' F. Making use of Eq(1) it follows that
IS ’

N N
ka1 _ _ (i)
"1 F=> fi=¢> ak; (13)
Eais(e) = go 5823'((1—&) pr(e), (12 3=

where the expression in the bracket provides the energy distence the strain and the local load on fibers can be obtained
sipated by the failure of a fiber which has already failed as
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F ak(l) 10 é T T T & |
E= N fi =F N (14) :\ —— kpu=1,2=0.05
k(i) k(i) 0ER N | Kina=1,820.25 | 3
i; a Z,l a 2N e k=2, 8=0.7
A SN — Kae=20, 2=0.7
10'F N 3

when the external loaH is controlled. The simulation of the

guasistatic loading proceeds as follows: in a given stable
state of the system we determine the load on the filbers i
from the external loadr using Eq.(14). The next fiber to a0
break can be found as

n(S)

=min—, r>1, (15

i.e., the fiber that breaks is the one for which the ratiéf;
is the smallest. Heré* denotes the index of the fiber to S
break,d; is the damage threshold of fibierandf; is the local FIG. 9. Avalanche size distributions for different valueskgf,

load on it. To ensure that the local load of a fiber is propor-anda when fibers have remaining stiffness and when the disorder is
tional to its stiffness, the external load has to be increased IBnnealed. The number of fibers wis= 1600, and averages were

a multiplicative way, so thaF—rF is imposed, and the made over 2000 samples. The number of avalanohEsize S are
failure index of fiberi* is increased by Tk(i*)—k(i*) also shown to demonstrate how the total number of avalanches
+ 1]. After the breaking of fibei* , the loadf; carried by the  changes.

fibers has to be recalculated making use of @4), which

also provides the correct load redistribution of the model. If}g demonstrates the existence of three different regimes. If
there are fibers in the state obtained whose load exceeds thg damage parameteris smaller thara,, the dynamics of
local breaking threshold, they fail, i.e., their failure index is gyalanches is close to the simple dry bundle model charac-
increased by 1 and the local load is again recalculated until gyizeqd by a power law of the mean field exponent 5/2.
stable state is obtained. A fiber can no longer break if itoyever, fora>a, the avalanche size distribution depends
failure indexk has reached” or Kyay during the course of - o the number of failureky,, allowed. The curve ok(a)

the simulations. This dynamics gives rise to a complex avay, the phase diagram separates two different regimes. For the
lanche activity of fiber breaks, which is also affected by theparameter regime below the curve, avalanche distributions
type of disorder. The size of an avalanchis defined as the yith an exponential shape were obtained. However, the pa-
number of breakings initiated by a single failure due to anymeter regime abovke.(a) is characterized by a power law
external load increment. Simulations revealed that varyingyisiripution of avalanches with a constant exponght

the two parameters of the mode},, & ork*, aand the  _5 15+ 05 significantly different from the mean field ex-
type of disorder, the CDFBM shows an interesting variety of

avalanche activities, characterized by different shapes of the
avalanche size distributions.

In Fig. 9 the histograma(S) of the avalanche siz€sare ¢
shown which were obtained for a system of remaining stiff-
ness and annealed disorder with Weibull paramete+s2
andd.=1. Since in the limiting case ai—0, the CDFBM
recovers the global load sharing dry fiber bundle model, in
Fig. 9 the curves with smali andk,,,,=1 are power laws
with an exponenty=5/2, in agreement with the analytical
results[29,30. Increasing the value af at a fixedk, 5, only
gives rise to a larger number of avalanches, i.e., parallel
straight lines are obtained on a double logarithmic plot, but
the functional form oh(S) does not change. However, when
a exceeds a critical valua, (a,~0.3 was obtained with the
Weibull parameters specified abgwbe avalanche statistics
drastically changes. At a fixed>a, whenk,,x is smaller

mazx

O

a
than a specific valud;(a), the avalanche sizes show an
exponential distribution, while above,(a) the distribution FIG. 10. Phase diagram for a continuous damage model with
takes a power law form with an expone@it=2.12+0.05. remaining stiffness for both types of disorder. The functional form

Based on the above results of simulations a phase diagrast the avalanche statistics is given in the parameter regimes. The
is constructed which summarizes the properties of avalocation of the dry bundle modéDBM) in the parameter space is
lanches with respect to the parameters of the model. Figuralso indicated.
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' ' ' and Figs. 9 and 11, it can be recognized that if the constitu-
NN —— K'=1,a=0.6 tive curve has a single quadratic maximum the correspond-
10 NG | k =4, 2=0.6 ing avalanche size distribution of the CDFBM follows the
\\ — k;=8,a=06 mean field results, while other types of avalanche statistics
10” ¢ \\\ — k=50,a-06 arises when this condition does not hold.
o~ 10°F \\.
% AN VI. CONCLUSIONS
10* F \\\;‘w._ A detailed analytical and numerical study of the continu-
R ous damage fiber bundle model is presented. The model is an
ok W’f‘_ extension of the classical fiber bundle model obtained by
wk R introducing a continuous damage law, and allowing for mul-
Sl A, i tiple failure of fibers with quenched and annealed disorders.
10 . . i A simple general derivation of the constitutive behavior of

the model is provided, which also facilitates obtaining ana-
S Iytical results for the microscopic damage process. Varying
its parameters, the model provides a broad spectrum of de-
FIG. 11. Avalanche size distributions for different valuekdf  scription of materials ranging from strain hardening to per-
at a fixeda>a, when fibers have no remaining stiffness and thefect plasticity; hence the model can be relevant to describe
disorder is annealed. the damage process of various types of materials
[36,43,37,41,4R It is a remarkable feature of the model that
ponenta=5/2[29,30. It is important to emphasize that the multiple failures of brittle elements can result in a macro-
overall shape of the phase diagram is independent of the typseopically plastic state, which has also been observed experi-
of the disorder(annealed or quenchgdnoreover, the spe- mentally in materials where the damage mechanism is the
cific valuesa,~0.3 andk.(a) depend on the details of the gradual multiple failure of ingredien{g1,42.
disorder distributiomp(d). The present study focused on the microscopic damage
A very different behavior was obtained for a system whenprocess to understand the emergence of the plastic plateau
fibers do not have any remaining stiffness afté&e*anumber  under strain controlled loading, and the resulting avalanche
of failures. Simulations revealed that in this case the avaactivity under stress controlled loading of the continuous
lanche statistics depend strongly on the type of disordeidamage fiber bundle model. Analytical results are obtained to
When the disorder is quenched the size distribution of avaeharacterize the damage process along the plateau under
lanches follows always the dry bundle results for the wholestrain controlled loading, furthermore, for stress controlled
domain of parameters, i.eP(S) shows a power law behav- experiments a simulation technique was developed, and the
ior with an exponentv=5/2. Whenk* >1, the larger num- distribution of avalanches of fiber breaks was explored nu-
ber of breakings results in more avalanches but the overatherically. Simulations showed that depending on the param-
distribution does not change. eters of the model the distribution of bursts of fiber breaks
Nevertheless, when the disorder is annealed the systepain be exponential or power law. Based on extensive com-
shows a more complex behavior. Wharfalls below a cer- puter simulations, a phase diagram characterizing the pos-
tain critical valuea, the results are similar to the DBM in- sible avalanche distributions is constructed in terms of the
dependently of the value &, however, fora>a. an inter- two parameters of the model. One of the most appealing
esting avalanche dynamics appedos the present values of outcomes is that the model has a broad parameter regime
the Weibull parametera,~0.35 was obtained In Fig. 11  where the avalanche statistics shows a power law behavior
the avalanche distributions are shown foramalue above With an exponent significantly different from the well known
a., varying the value ok*. It is very important to empha- mean field exponent, in spite of the infinite range of interac-
size that the curves in all cases can be well fitted with dion among fibers. The results obtained have relevance to
power law; however, the value of the exponent depends odnderstanding the acoustic emission measurements per-
k*. Two extreme cases can be distinguished:Kb=1 the  formed on various elastoplastic materigd$,43,37,41,4R
system recovers the DBM avalanche dynamics. On the other
hand, fork* >k.(a) the exponent of the power laws 3
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